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Microstructure and fracture toughness of SiC-platelet reinforced SiC
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Silicon carbide (SiC) is acknowledged as one of the
promising ceramics for high-temperature structural ap-
plications because of its excellent thermal and me-
chanical properties. However, its relatively low fracture
toughness has long hindered this material from wider
applications. A number of attempts have been made
to improve the fracture toughness of SiC. The frac-
ture toughness of SiC can be profoundly increased by
suitable tailoring of the microstructure, e.g. by grow-
ing platelike grains associated with β → α phase trans-
formation and by manipulating the grain boundary
phase [1–5]. One the other hand, the interest in ceramic
platelet-reinforced material has continuously grown in
many engineering ceramics in order to achieve im-
proved fracture toughness [6–10]. In this study SiC
platelet-reinforced SiC was developed by introducing

Figure 1 Optical micrographs of the polished and etched surfaces of the specimens hot-pressed at 2000 ◦C: α-SiC matrix + 10 vol% SiC platelet
(a) for 1 and (b) for 120 min; β-matrix + 10 vol% SiC platelet (c) for 1 and (d) for 120 min.

SiC platelets into SiC starting powder (α- or β-SiC)
followed by hot pressing. Microstructures and fracture
toughness were investigated. Interaction between the
introduced SiC platelets and matrix SiC powders, asso-
ciated with β → α phase transformation, is discussed.

α-SiC (A20 H.C. Starck GmbH, Goslar, Germany)
and β-SiC powder (Betarundum, Grade UF, IBDEM,
Japan) were used as the starting raw materials for the
matrix phases. The SiC platelets used as reinforcement
were hexagonal SiC (C-Axis Technologies, Quebec,
Canada) with diameter 10–25 µm and thickness 1–
6 µm (mean aspect ratio = 6). Y2O3 (Fine Grade, H.C.
Starck GmbH, Goslar, Germany) and Al2O3 (AKP50,
Sumitomo Chemical Co. Ltd., Tokyo, Japan) were used
as sintering additives. The α-SiC powder (90 wt%)
and the additives (4 wt% Y2O3 + 6 wt% Al2O3) were
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mixed in a planetary mill for 12 h using alumina balls in
isopropyl alcohol in a polypropylene container. After
mixing, this slurry mixture was poured into a flat-
bottomed flask, followed by the addition of 10 wt% SiC
platelet as reinforcement. The flask was then placed in
a heating mantle, resting on a magnetic stirring plate.
The slurry was vigorously stirred at 25 ◦C for 1 h and
then dried at 80 ◦C. After drying, the softly agglomer-
ated powders were gently crushed and sieved through
a 60 mesh screen. The batch using β-SiC powder was
prepared by the same procedure. The powder mixtures
were compacted in a graphite mold of 30 mm diameter.
These were then hot-pressed at 2000 ◦C at a pressure
of 30 MPa in an atmosphere of flowing argon. Hold-
ing time at 2000 ◦C was varied from 1 to 180 min. The
hot-pressed blocks were cut into bars 25 × 4 × 3 mm
for evaluation and testing. The bulk densities of the
sintered specimens were measured by the Archimedes
method. The phases of the sintered specimens were an-
alyzed by X-ray diffractometry (XRD). Specimen sur-
faces were polished normal to the hot-press direction to
1 µm diamond paste finish for characterization. These
surfaces were etched with a mixture of molten salts
(NaOH + K3Fe(CN)6) to highlight grain structures.
After gold coating, the etched surfaces were examined
by optical and scanning electron microscopy (SEM).
Fig. 1 shows optical micrographs of the polished and
etched surfaces of the specimens. No porosity is ev-
ident in the micrographs. Density determinations by
Archimedes’ method confirmed a porosity level <1%
in each case. α-SiC platelets added were well dispersed
in both α- and β-SiC matrix. For the specimens hot-
pressed for 1 min (Fig. 1a and c), the apparent volume
fraction of SiC platelets was about 10 vol% (volume
fraction was measured by a linear intercept method),
consistent with the amount of SiC platelets added in
the beginning, indicating no considerable growth of
SiC platelet in either α- or β-SiC matrix. Note that
no significant difference in microstructure between
α-SiC matrix (Fig. 1a) and β-SiC matrix (Fig. 1c)
was found. For the specimens hot-pressed for 120 min,
there was a significant difference in microstructure
between α-SiC matrix (Fig. 1b) and β-SiC matrix
(Fig. 1d). For α-SiC matrix, both α-SiC grains and
α-SiC platelets grew slightly, showing a coarser mi-
crostructure (diameter 30–50 µm and thickness 3–
6 µm). For β-SiC matrix (Fig. 2d), the size and vol-
ume fraction of α-SiC platelets increased significantly
(diameter 50–100 µm and thickness 4–7 µm), indicat-
ing considerable growth of α-SiC platelets (compare
with Fig. 2b). α-SiC platelets added to the β-SiC ma-
trix were likely to act as seeds for the growth of α-
SiC associated with β → α phase transformation [1,
4]. The growth of SiC platelets proceeded predomi-
nantly along the direction of the basal planes of the
platelets, indicating β → α phase transformation in the
SiC [3]. Higher volume fraction of platelets (about 85
vol%) resulted from grain growth of α-SiC platelets as
β-SiC matrix was consumed. XRD analysis confirmed
that β-SiC matrix was completely transformed to α-SiC
phase. Grain growth of α-SiC platelets was enhanced
by β → α phase transformation. In other words, grain

Figure 2 Fracture toughness as function of hot pressing time for α-SiC
and β-SiC matrix with the addition of 10 vol% α-SiC platelet. Open
symbols are data from previous work [3].

growth of α-SiC platelets in the β-SiC matrix is much
faster than that in the α-SiC matrix. Fig. 2 shows frac-
ture toughness versus hot pressing time for α- and β-
SiC matrix with the addition of 10 wt% α-SiC platelets.
Data from the previous work on α-SiC and β-SiC with
no addition of SiC platelet are included for comparison
[3]. The previous work indicated that improved frac-
ture toughness with increasing holding time resulted
from a microstructural change from equiaxed to elon-
gated grains [2, 3]. The specimens with added SiC
platelets have superior toughness to monolith SiC. For
α-SiC matrix with additions of SiC platelets, the frac-
ture toughness increased with increasing hot pressing
time. Microstructure coarsening accounted for increas-
ing fracture toughness. For β-SiC matrix with added
SiC platelets, the fracture toughness increased even
more up to 11.6 MPa · m1/2. This increased toughness
resulted from a coarse microstructure with high vol-
ume fraction and aspect ratio of SiC platelets. Fig. 3
shows an SEM micrograph of the fracture surface of this
material. A mixture of intergranular and transgranular
fracture mode is evident, indicating that crack bridging

Figure 3 SEM micrograph of the fracture surface of the specimens hot-
pressed at 2000 ◦C for 120 min (β-SiC matrix + 10 vol% SiC platelet).
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[11, 12] by large SiC platelets a probable toughening
mechanism.
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